CODE FRAMEWORK BOOT CAMP
CLIENT SIDE WEB

[bookmark: _GoBack]Overview
The client side web development is a common pattern used to develop dynamic web sites. Unlike traditional MVC Server side programming, Client Side web development uses JavaScript for its view models.
Objectives
In this lab you will learn:
· How to Knockout.js to program client side web sites.
Prerequisites
The following is required to complete this lab:
· Visual Studio 2010 or above
· Knockout Framework
· EPS JavaScript framework
Exercise
This lab includes the following:
1. Creation of ASP.NET MVC Project for UI
2. Adding support for JavaScript frameworks
3. Creation of client side Customer List
4. Creation of client side Detail
5. Advanced features
Estimated Time: ~2 hours
Exercise 1 – Create the MVC Project
The MVC Project will follow the Microsoft ASP.NET MVC pattern. The pattern of development utilizes Models, Views, and Controllers to render HTML code to the client (browser).
1. Start Visual Studio.
2. Select the Visual Studio menu File then New Project.
3. From templates select Visual C#/Web/ASP.NET MVC 4 Web Application
[image:]
4. Name the Solution CF.Training and give the project a name of CF.MVC
5. Select the Internet Application project template.
[image:]
6. The resulting solution will contain the standard MVC project structure
[image:]
7. You can run the application now to verify that a working MVC solution structure has been generated. By default Visual Studio will start an instance of IIS Express to host the website.

Exercise 2 – Adding support for JavaScript Frameworks
Task 1 - EPS JavaScript Framework
The EPS JavaScript framework is a collection of JavaScript utilities and helpers commonly used on client side application. The exact contents of the framework may vary from application to application. It is not required to develop client side applications, but this document shows its usage. You will be provided with the current EPS Framework.
1. Right click on the Scripts folder and select Add Existing. Navigate to the location you extracted the eps-core.js file and select it.
2. Navigate to the Views\Shared folder and open the _Layout.cshtml file. Towards the bottom add the reference to the eps library (must come after a jQuery reference)
 <script src="~/plugins/jquery/jquery-1.11.2.min.js"></script>
 <script src="~/plugins/Bootstrap/dist/js/bootstrap.min.js"></script>
 <script src="~/Scripts/eps-core.js"></script>
 @RenderSection("scripts", required: false)
</body>

Task 2 –Knockout.js Framework
Knockout.js is a JavaScript framework designed to provide declarative bindings for HTML elements to a backing JavaScript View Model. This binding is two-way, meaning that if you update the UI element (such as a text box) the backing View Model property is updated, and if the View Model property is programmatically updated the bound UI element is as well. It is strongly recommended that you learn more about Knockout at http://knockoutjs.com/. There are several tutorials and excellent documentation that illustrate how Knockout functions.
Installing Framework
1. You can “install” the Knockout framework in one of two ways, manually downloading, or using Nuget. Either way works fine, but manually downloading gives more control over the location of the framework. So let’s manually install KO.
2. Browse to http://knockoutjs.com/ and right click on the Production download link and select Save link as, save the file in a location you can easily find.
3. Right click on your solution and select Add/New Folder. Give the folder a name plugins.
4. Right click on the new plugins folder and create a folder called knockout.
5. Right click on the knockout folder and select Add Existing. Browse to find the Knockout JavaScript file you download in step 2.
Reference Knockout
Where you reference KO will in part be dependent on how your application is structured. If all pages on your site will need KO then it should be referenced in the layout page. Otherwise place the reference in the file that will utilize KO. Since our application will only use KO for specific pages we will wait to reference KO until the view is created.
Exercise 3 – Customer List
In this exercise you will create a new view to display a list of customers. When creating new views you typically create the View Model first, then the View.
Task 1 - Main View Model
[image:]The Main View Model will be the KO model bound to the view. It will contain multiple properties that will hold one or more view models. Each view model will be responsible for supporting different parts of the application, like displaying a list of customers, or displaying a customer CRUD form.
1. Right click on the project folder Scripts select Add/New Folder, give it a name of called Models.
2. Right click on the new Models folder and select Add/New Folder, give it a name of called Customer.
3. Right click on the project folder Customer select Add/JavaScript file, give it a name of called MainCustomerViewModel.js
4. Add the following code:
var MainCustomerViewModel = function () {
 var self = this;
 self.CustomerVM = ko.observable(null);
 self.CustomersVM = ko.observable(null);
 self.Load = function () {
 eps.require(["Scripts/Models/Customer/CustomersViewModel.js"],
 function () {
 MainVM.CustomersVM(new CustomersViewModel());
 MainVM.CustomersVM().Load();
 });
 };
};

5. Create some fake data. Eventually we will connect our application to a data access layer (DAL), but for now we’ll use some hard coded data to see how our application will look. At the bottom of the MainViewModel.js file add the following JSON data. This will emulate a JSON data payload returned by a service call.
var fakeData = {
Success: true,
Customers: [
{ Id: 123, FirstName: "Jack", LastName: "Jones",
 Address: "123 Street", Phone: "888-888-8888", CreditLimitId:123,
 InActive: false },
{ Id: 456, FirstName: "Jack", LastName: "Robinson",
 Address: "234 Street", Phone: "666-666-6666", CreditLimitId:234,
 InActive: true },
{ Id: 567, FirstName: "Ted", LastName: "Smith",
 Address: "345 Street", Phone: "555-555-5555", CreditLimitId:345,
 InActive: true },
{ Id: 678, FirstName: "Clint", LastName: "Eastwood",
 Address: "456 Street", Phone: "777-777-7777", CreditLimitId:456,
 InActive: false }
]}Note: If you choose to not use the EPS JavaScript library you can manually include your view model scripts like any other JavaScript file. However the .requre function is designed to load JavaScript files on demand, and allow you to defer execution of code that depends on these files until they have been loaded.

Task 2 - List View Model
The list view model is responsible for displaying a list of customers. When the main view model is loaded this list view model will be loaded into one of the properties on the main view model.
1. Right click on the project folder Customer select Add/JavaScript file, give it a name of called CustomersViewModel.js
2. Start by defining the list item view model. A list item view model will contain the properties returned by the service (usually a “Quick Information” object) that will be displayed on the list. It should be small and contain only properties or computed properties. At the top of the CustomersViewModel.js file add the following:
var CustomerListItemViewModel = function (data) {
 var self = this;
 self.Id = ko.observable(data.Id);
 self.FirstName = ko.observable(data.FirstName);
 self.LastName = ko.observable(data.LastName);
 self.InActive = ko.observable(data.InActive);

 self.DisplayName = ko.computed(function () {
 return self.FirstName() + " " + self.LastName();
 });
 self.Selected = ko.observable(false);
 //this property will be used later to enhance the look
 self.Css = ko.computed(function () {
 var css = "card";
 if (self.Selected()) { css = css + " selected"; }
 if (self.InActive()) { css = css + " inActive"; }
 return css;
 });
}
3. Define the CustomersViewModel. While still in the CustomersViewModel.js file add the following code:
var CustomersViewModel = function () {
 var self = this;
 self.items = ko.observableArray([]);
 self.SelectedItem = ko.observable(null);
 self.SelectItem = function (item) {
 if (self.SelectedItem() != null && item.Id() === self.SelectedItem().Id())
 { return; }
 self.SelectedItem(item);
 item.Selected(true);

 eps.require(["Scripts/Models/Customer/CustomerViewModel.js"],
 function () {
 MainVM.CustomerVM(new CustomerViewModel());
 MainVM.CustomerVM().Load(item.Id());
 });
 }

 self.Load = function () {
 //when calling the service do NOT use the eps.status,
 //instead pass in the element Id used here to the eps.servicecall
 eps.status("loading", "status-container-customers");
 //simulate service delay....
 setTimeout(function () {
 var response = fakeData;
 self.items($.map(response.Customers, function (item) {
 return new CustomerListItemViewModel(item);
 }));
 eps.status("ready", "status-container-customers");
 }, 2000);

 };
};
Here we define a Knockout observable array, items that will hold a list of customers. The SelectedItem property will hold a reference to the customer selected by the user. The SelectItem function will define what happens when the user clicks or selects a customer. And the Load function will be responsible for retrieving the list of customers to be displayed. Note that the Load function will ultimately make a service call to retrieve a JSON payload, where we us a JavaScript function setTimeout to simulate a two second delay. Later we will hook up a wait indicator to let the user know the application is busy.

Task 3 - Main View (HTML)
1. Create a Customer Controller
2. While in the controller, Right click on the “return View” and select the Add View menu option.
3. Enter Index for the View Name
4. Open the Index generated (look in \Views\Customer folder).
5. At the bottom of the view add a JavaScript section to instiante Knockout and bind it to the view
<!--top of view... -->
@section scripts
{
 <script type="text/javascript">
 var MainVM;
 eps.require(["Scripts/Models/Customer/MainCustomerViewModel.js"],
 function () {
 $(document).ready(function () {
 MainVM = new MainCustomerViewModel();
 MainVM.Load();
 ko.applyBindings(MainVM);
 });
 });
 </script>
}
Here we have defined a JavaScript varialbe called MainVM. After loading the file MainCustomerViewModel.js we instiantate a new instance of the Knockout view model and assign it to the MainVM variable. We then call the Load method on the MainCustomerViewModel, and call the Knockout applyBindings to wire up the Knockout model to the view.

Task 4 – Customer List View (HTML)
1. Right click on the \Views\Customer folder and select Add/View
2. Name the view _Customers and check the option Create as a partial view
[image:]
3. Open the view and add the following code
<div class="view-title">Customers</div>
<div data-bind="foreach:items">
 <div data-bind="html:DisplayName, click:$parent.SelectItem"></div>
</div>
4. Return to the Index.cshtml and update it to include the customer list partial view:
<!-- ko with:CustomersVM-->
 @Html.Partial("~/Views/Customer/_Customers.cshtml")
<!--/ko-->
... more partials for other parts of the application
@section scripts ...
The @Html.Partial is a standard MVC partial file inclusion. Here we wrap it with a Knockout comment binding that tells Knockout that the _Customers partial view binding scope is contained within the CustomersVM property of the MainVM.
5. Run the application. You should see following result. At this point it only shows a list of customers with no other interaction. Proceed to the next step to create the detail view for a customer record.
[image:]
Task 5 – Customer Detail View Model
The customer detail view model will be responsible to defining the CRUD commands and the properties associated with a customer record. We will separate the commands from the record properties by defining a “detail view model” and an “item view model”. For convenience these two view models may be defined in the same file.
1. Right click on the project folder Customer select Add/JavaScript file, give it a name of called CustomerModel.js
2. Start by defining the “item” view model that will basically be a property bag holding all the properties for the customer record. Additionally is may contain some computed or subscribe properties (specialized Knockout objects). At the top of the CustomerModel.js file add the following:
var CustomerItemViewModel = function (data) {
 var self = this;
 self.Id = ko.observable(data.Id);
 self.FirstName = ko.observable(data.FirstName);
 self.LastName = ko.observable(data.LastName);
 self.Address = ko.observable(data.Address);
 self.Phone = ko.observable(data.Phone);
 self.CreditLimitId = ko.observable(data.CreditLimitId);
 self.InActive = ko.observable(data.InActive);

 self.Css = ko.computed(function () {
 return self.InActive() ? " inActive":"";
 });
};
3. Add the CustomerViewModel. In the same file add the following:
var CustomerViewModel = function () {
 var self = this;
 self.Customer = ko.observable(null);
 self.Delete = function () {
 eps.log("feature not yet implemented", "warning");
 }
 self.Cancel = function () {
 if (MainVM != undefined) {
 MainVM.CustomerVM(null);
 }
 }
 self.Save = function () {
 //for our fake data, generate an ID when saving
 if (self.Customer().Id() === eps.emptyGuid) {
 self.Customer().Id(eps.newGuid());}
 if (MainVM !== null && MainVM.CustomersVM() !== null) {
 MainVM.CustomersVM().UpdateList(self.Customer());
 }
 self.CanDelete = ko.computed(function() {
 if (self.Customer() === null) return false;
 return self.Customer().Id() !== eps.emptyGuid;
 });

 self.Load = function (customerId) {
 if (customerId === eps.emptyGuid) {
 //load default values
 self.Customer(new CustomerItemViewModel({
 Id: eps.emptyGuid,
 FirstName: "",
 LastName: "",
 Address: "",
 Phone: "",
 CreditLimitId: null,
 Inactive: false
 }));
 return;
 }
 //when calling the service do NOT use the eps.status,
 //instead pass in the element Id used here to the eps.servicecall
 eps.status("loading", "status-container-customer-edit");
 //simulate service delay....
 setTimeout(function () {

 //we have fake data to look up some values...
 for (var i = 0; i < fakeData.Customers.length; i++) {
 if (fakeData.Customers[i].Id == customerId) {
 var response = {
 Success: true,
 Customer: {
 Id: fakeData.Customers[i].Id,
 FirstName: fakeData.Customers[i].FirstName,
 LastName: fakeData.Customers[i].LastName,
 Address: fakeData.Customers[i].Address,
 Phone: fakeData.Customers[i].Phone,
 CreditLimitId: fakeData.Customers[i].CreditLimitId,
 InActive: fakeData.Customers[i].InActive
 }
 }
 }
 }

 self.Customer(new CustomerItemViewModel(response.Customer));
 eps.status("ready", "status-container-customer-edit");
 }, 500);
 };
};
Let’s examine each property:
a. Customer – a simple Knockout property to hold an instance of the CustomerItemViewModel.
b. Delete – function that will contain a call to a service to delete (or mark inactive) the current record (contained in the Customer property).
c. Cancel – function that will set the MainVM reference to this view model to null. Doing so will cause the Customer view (defined later) to not be displayed.
d. Save – function that will contain a service call to add/update a record. Upon success of the service call it is necessary to update the “list” view model with new/updated information (the CustomerVM().UpdateList method that is not yet defined).
e. CanDelete – a Knockout compute function that will control the display of the delete icon. Note that a computed function will be updated anytime an observably property contained in the computation is modified.
f. Load – function that receives the id of the record to load. Eventually the information will come from a service call, but here we look up the record in our fake data and assign it to the Customer property.
Task 6 – Customer Detail View (HTML)
The customer detail view will display the detail properties of a single record. Additionally it will have CRUD actions exposed to allow the user to interact with the record.
1. Right click on the \Views\Customer folder and select Add/View
2. Name the view _Customer and check the option Create as a partial view
Add the following code to the view:
<div class="view-title">Customers</div>
<div class="actions">
 <button class="btn" data-bind="click:Delete,
 visible :CanDelete">Delete</button>
 <button class="btn" data-bind="click:Cancel">Cancel</button>
 <button class="btn" data-bind="click:Save">Save</button>
</div>
Here we define the icons that are wired up to the CRUD functions defined on the CustomerViewModel.
3. Continue adding HTML for the form:
<form id="customer-edit-form" class="form-horizontal" data-bind="with:Customer">
 <div class="row" data-bind="css: Css">
 <div class="col-xs-9">
 <div class="form-group">
 <label for="FirstName" class="col-xs-4 control-label">First
 Name</label>
 <div class="col-xs-8">
 <input type="text" class="form-control" name="FirstName"
 id="FirstName" data-bind="value:FirstName">
 </div>
 </div>
 <!-- Other properties... -->
 <div class="form-group">
 <label for="InActive" class="col-xs-4 control-label">In
 Active</label>
 <div class="col-xs-8">
 <input type="checkbox" class="form-control" name="InActive"
 id="InActive" data-bind="checked:InActive">
 </div>
 </div>
 </div>
 </div>
</form>
Here we see that we have defined a form to edit our record. The with Knockout binding tells Knockout that all bindings inside the form tag are relative to the Customer property. This form is using BootStrap (http://getbootstrap.com/) classes to control the layout of the form.
Task 7 – Wire up Detail View Model and View
Now that we have our detail view model and view defined we need to update the Index and CustomersViewModel to utilize them.
1. Return to the Index.cshtml and update it to include the customer partial view:
...
<!-- ko with:CustomerVM-->
 @Html.Partial("~/Views/Customer/_Customer.cshtml")
<!--/ko-->

@section scripts ...
After the closing of the Customer List view model assignment add a new Knockout binding for the CustomerVM property. Inside this binding add a new MVC partial reference to the newly created Customer view.
2. Running the application now should show a list, and when clicking on an item display the details of the selected item in an edit form.
[image:]

Summary
In this lab you have learned how to create a simple client side application using ASP.NET MVC and Knock.js. In the following labs you will create a CODE Framework Service project that will replace the hard coded list used in this project.
[image: D:\Temp\images\CODETraining_Small.png] 11

image4.png

image5.png

image6.png

image7.png

image1.png

image2.png

image3.png

image8.png

