[bookmark: _Toc299540607]CODE Solution Setup and Development Practices

The following is a review of the practices we’ve found most productive for developing applications using the CODE Architecture (see the document titled “Standard Architecture Overview”).
[bookmark: _Toc299540608]
[bookmark: _Toc299540610]Methodology for Development Work
At CODE, we’ve found that the most productive way to develop applications is to split development up into 2 sides; Even if you are the only developer! Working on the entire application from top to bottom at one time can quickly become confusing. Your desktop will soon be cluttered with open files and you will find yourself lost in the solution. In addition, working on the entire application at once assumes that you have an extremely broad set of expertise. Because of this, CODE typically assigns work on one side or the other and developers will find that you will EITHER be assigned work on the “Service” side of the application which includes projects in the Middle Tier and Service folders, -OR- work on the “User Interface” side of the application. 
[bookmark: _Toc299540611]Working on the UI Side
Working on the UI side, you will find yourself working with Controllers, Views, ViewModels, Behaviors, Styles, Scripts, Resources and other types of files. Whether you’re working with WPF, ASP.NET MVC, Windows Forms, ASP.NET Web Forms, Windows Phone, iPhone, iPad, Android, Ruby or some other technology, the basic architecture will be pretty much the same. We always try to use a standard Model-View-ViewModel approach with a Controller. While it’s not always possible, it’s what we strive for. The environment should be familiar, even if you’re coming into it from another technology (iPhone and iPad are the most unique to adjust to for sure).
No matter the UI technology, we strive to separate the look of the UI from the controls. On the web this could mean using Style sheets. In WPF it could mean putting the “look” into resources. How this is done depends on the technology being used and often in initial development the look is created in-line and then separated.
To interface with the Service side, you will typically get a copy of the Contract .dll from the Service side developer. If you are not developing in .NET then you’ll use the documentation from the Contract .dll and possibly some samples of the JSON or SOAP requests and responses provided by the Service side developer.
To begin development, it is not uncommon to start work without a Service even existing. In your Controllers you will simply load fake (often static) data into your ViewModels instead of retrieving it from a Service and mapping (copying) it. Entire UI applications can be developed this way. If you are developing the UI application first (which is becoming pretty standard), you will be inventing the method calls and data exchange formats that the Service side developers will turn into the Contract .dll. 
Once a real Service(s) is developed, you need only modify your Controllers to use the Service instead of the fake data. You will also have to configure your Solution properties to run both the Development Host and your UI application when building. Nothing else should have to change and these changes should be quick and easy.
One thing to mention here is that even if the Contracts are developed first, we ALWAYs create a ViewModel (and possibly Other Models used by the view model) and not using Data Contracts directly in a View. Having Data Contracts do double-duty as Models tends to be confusing and often leads to code creeping into the wrong places. The Data Contract’s job is in moving data to and from the service.
We’ve found that not having to worry about anything beyond the Contracts makes it easier and faster to develop applications.
[bookmark: _Toc299540612]Working on the Service Side
Working on the Service side you will work with databases, an ORM (for now only Milos, but perhaps later NHibernate or Entity Framework), business logic, WCF, interfaces (Contracts), Development Hosts, Windows Service Hosts, setup projects, etc. On this side of the development fence, everything in the Solution should look pretty much exactly like what is in every other Solution. You will have basically the same projects, same solution organization and follow the same methodologies. Solutions should only differ in the details of which database(s) you use, the method calls and interfaces you define in your Contracts and the implementation of those method calls, and of course the root name of the solution and project files.
In effect, this side of development should be extremely EASY. It follows a set recipe and the vast majority of methods you implement will be standard operations. The table and column names will change in each new solution and you will occasionally implement some non-standard business logic, but not a lot.
Working on the Service side you will be responsible for most of the WCF work and most or all of the database work. In many cases, the UI developers will invent the method calls and define the data (Contracts) that must move back and forth prior to developing the Service and this seems to be becoming the default scenario for green field applications. In other cases, the Service calls will be developed first. In some cases an existing database will come first. 
Whichever scenario you find yourself in, the Service’s job is to make data and logic available to any and all client applications, whether they are desktop apps, mobile device apps or even other Services. The number one priority is clear, understandable, easy to use, high performance method calls for consumption by others.
Services will first run under a Development Host. In fact, this will probably be the only host used for most of the development phase. This host will be used by developers on the UI side of the Solution. Service side developers will also use the Development Host to test and troubleshoot Services. The host we use in our framework provides a built-in ability to test Service calls.
One of the unique aspects of doing Service side development is that before deployment we must have a host that will run outside of the development environment. At CODE, we create Windows Services (a whole different meaning for the word service than we’re using here) to do that hosting. This approach allows us to use a variety of different protocols, it does not require that IIS be installed on the server and it does not require a logged-in user on the server. Developing Windows Services requires that we also develop a setup program to install the Windows Service. Another document named “Creating the 6 Types of Service Side Projects” shows step-by-step how to build the projects used on the Service side.
We’ve found that not having to worry about anything beyond the Contracts makes it easier and faster to develop Services.
[bookmark: _Toc299540613]Other Thoughts
The biggest downside we’ve noticed with this approach so far is that often developers working on one side use naming conventions that differ from the developers on the other side. For instance in our databases, we traditionally name primary key fields PK_TableName and foreign key fields FK_TableName, whereas in UI development we use Id for the property representing the primary key and TableNameId for properties representing foreign keys. Having different terminologies means we have to do manual mapping as we move the data around and also introduces a disconnect between the two sides that can be confusing for people doing maintenance later on. 
When it comes to the names of method calls in the Contracts remember that the service is designed to serve a multitude of applications, so make sure the method names reflect that.



Glossary of Terms
	Contract
	A WCF term. Contracts are created in code as .NET interfaces with special attributes applied. Contracts are compiled into their own .dll. Contracts are used by both the UI and Service side projects as an agreement on method signatures and the structure of data passed to and from methods.

	Controller
	Controllers are class files that are used to run a View (a screen). They call Services, load data into ViewModels, match the ViewModel to a View and load the View.

	Development Host
	WCF Services are just class files that compile into a .dll. Services must be run within an executing application. During development, it is easiest to run and troubleshoot Services in an .exe running on the desktop. The CODE framework has a Development Host that runs as an .exe on the desktop and provides rich testing and troubleshooting tools. This host is not suitable for deployment to staging areas or client sites.

	Model
	Model is an overloaded term not to be confused with ViewModel. In the Model-View-ViewModel with Controller architecture used at CODE, the Models are the Business Entities on the Service side, however from the UI application’s perspective, the Contracts that represent those Business Entities can be considered the Model.

	Service / SOA
	Service and Service Oriented Architecture describe a clean break between the UI part of an application and the business logic part of an application. Services have clearly defined Contracts which describe the methods they expose as well as the structure of the data passed to and from those methods.

	Service Host
	WCF Services are “hosted” by a running application. At CODE, we use either a desktop .exe called a Development Host or a windows service called a Windows Service Host to run our WCF Services. Additional options not used by CODE include IIS and the Visual Studio built-in hosting and client tools.

	Service Implementation
	This is the actual coding of the Service methods. The end-product of a Service project in .NET is a .dll that will be hosted in another application.

	View
	The graphical representation of the application to the user. In ASP.NET web forms this would be the HTML in an .aspx page. In WPF, this would be a .xaml file. In a Windows Forms application, it would be a form, etc…

	ViewModel
	[bookmark: _GoBack]An object that provides the data used by a View. Typically the ViewModel contains properties that the View data-binds to. ViewModels generally do not contain public methods. 

	Windows Service Host
	A Windows Service application that runs on a Windows machine in the background and doesn’t require a logged in user. At CODE we use a Windows Service application to host our services in staging and production environments. Windows Services must be packaged in a setup program in order to be installed and run.



