[bookmark: _Toc301185975]CODE Standard Architecture Overview

The following represents the standard approach developers at CODE will take on every new project. Of course, each project is different and the requirements of the project may dictate that it deviates from the standard approach, however that should be the exception, not the rule and all deviations should be approved by the Chief Software Architect (CSA).

Contents
CODE Standard Architecture Overview	1
Overview	2
View Layer	4
ViewModel Layer	8
Other Models	11
Controller Layer	13
Contract Layer	16
Service Layer	21
Business Object Layer	24
Data Access Layer	27
Database Layer	28
Mapping	29
Exception Handling and Logging	30
Hosting Services	32
The _ExternalComponents Project	35
Reference Project, Video and Other Resources	37

[bookmark: _Toc301185976]Overview
The standard architecture emphasizes a service oriented approach (SOA) and a variation of the Model View ViewModel (MVVM) development pattern. There are a standard number of layers (8) and a standard set of things that should be done in each layer.
1. View
2. ViewModel (and Other Models)
3. Controller
4. Service Contract
5. Service
6. Business Object
7. Data Access Layer
8. Database
We’ll examine what each layer does, what kind of code you commonly find in it and some rules about what should or should not go in each layer.

 [image:]

[bookmark: _Toc301185977][image:]View Layer
The view layer is all about the controls on the user interface.

This layer should be AS THIN AS POSSIBLE and should contain very little code.

How you develop views depends on what your target environment is. You may use WPF for a Windows Client, HTML, Silverlight, Flash for a web site, Objective C for iPhones and iPads, etc.

For the most part the View should be just a visual representation and the only thing you will do with it is to bind to properties and events on the Model.

Whenever possible, we want the “looks” of the view to be separated from the view itself so that it can be re-styled easily. Looks include things like fonts, font sizes, colors, layout, etc. For a WPF app this means separating that information into Styles and Templates that are saved separately as resources. In web apps, it usually means storing the Looks information in Cascading Style Sheets (.css files).

Here is an example of a View:
[image:]

Where is it?
[image:]
It’s in the User Interface folder in the Solution! There may be multiple UI projects in this folder. For instance, there might also be a project for a web site here. Within each UI project you will find a “Views” folder where all views live.

Here is the XAML for the pink rectangles with progress bars shown in the screen shot above:
[image:]
Notice that the majority of the XAML is defining which controls to use (TextBlock, ProgressBar, Grid…) and to binding properties and events.

In this example, there is still some in-line “Looks” information (e.g. BorderBrush=”Red”) which will ultimately be factored out into a style, however during development, it is often easier to keep some or all of the Looks information in-line during the early phases of developing a View.

While we’re on the subject, here is an example of a Style that can be saved separately from the View and used by other Views:
[image:]
A series of Styles stored together can be used to make up a “Skin” for an application.

[bookmark: _Toc301185978][image:]ViewModel Layer
The ViewModel is all about formatting data for display and it consists mainly of properties that the View binds to.

ViewModels typically contain a lot of properties, but not much code. What code they do contain is usually in the “getters” and “setters” of the properties and is only used to format data for display. For example, you might combine a first and last name to create a full name that can be displayed on the view. Or you might check the value of a bank balance property and convert it to a Green, Yellow or Red color which the View can bind to the background color of a control.

Usually, each ViewModel has a corresponding View, though you may use a ViewModel with multiple Views, for example, to make the information look different to an employee than it does to a customer or to show only a subset of the information.

In the case where you are developing multiple UIs, you might be able to re-use a ViewModel across different UI projects. For example, a ViewModel built in .NET might be useable in both a WPF and an ASP.NET app.

In some very simple cases where the data is going to be read-only, you may be tempted to use the data Contract as-is as a ViewModel, however you’ll find in most cases that you will eventually end up creating a ViewModel and mapping the data from the contract class into it anyway, so we recommend creating the ViewModel right away. Using Contracts as ViewModels can become confusing as development moves on.

Where is it?
[image:]
Also in the UI folder, typically in the same UI project as the View(s) it is used with.
Here is the ViewModel for the pink rectangle we just looked at:
[image:]
Our sample screen shot has several different things on it. So far, we’ve been looking at the “pink boxes” which are represented here in the Machines property, which is a collection (an ObservableCollection in this case which is necessary for our WPF View) of MachineInformationModels.
This Machines property is what we bind to our ListBox control in the View which displays all of the machines on the UI for us.

Another function of the ViewModel specific to WPF is to implement INotifyPropertyChanged. The code to implement this WPF-specific interface is:
[image:]

This allows a property to notify WPF that all or part of the View must be updated when the property’s value is changed and it’s typically called in property setters like this:
[image:]

[bookmark: _Toc301185979]Other Models
Other Models are all about using complex data types in ViewModels.
You probably noticed that while our ViewModel (CalendarViewModel.cs) example had a property name Machines, it didn’t actually have any specific information about each machine. The Machines property is a collection of MachineModel objects. It is complex data type that is used by the ViewModel. You can think of “Other Models” as “Sub-Models” used in a ViewModel or in another Sub-Model.
Where is it?
[image:]
In this case, the Other Model (MachineModel) used by this ViewModel (CalendarViewModel) are stored in the same file (CalendarViewModel.cs). Like ViewModels, Other Models should not have very much code in them. Any business logic for you application should be handled in your Business Objects in a much deeper layer.
Here is the code for this Other Model:
[image:][image:]
Notice the code in the “getter” of the ItemsProducedText property. This is pretty common code for ViewModels and Other Models, formatting information so that the View only has to bind to it. We prefer this approach over using “Binding Converters” because it is more straightforward and easily accomplished in our ViewModels. Also notice that this particular example does not implement INotifyPropertyChanged, presumably because there is no need to update the UI if any of these property values are changed.

[bookmark: _Toc301185980][image:]Controller Layer
Controllers are all about hooking up Views, ViewModels and Services.
When an application wants to show a View on the UI, it calls a method in the appropriate Controller.
The Controller then does 4 things:
1. Calls one or more Services to get data
2. Maps the data from the Contracts returned by the Service to the ViewModel and Other Models
3. Displays the View which uses the mapped data
4. Gives you as the developer a place to put a breakpoint when opening a View

The Controller is only used to open the View, it is not used after the View has been opened.

Where is it?
[image:]

Here is the code for our Controller which displays our sample screen:
[image:]
In this case, the Controller can display 1 of 3 Views and we’re looking at the code for the “Calendar” View.
Most of the code is used to shuffle data between the Contracts retrieved by the Service and the Model and Entities. It would not be uncommon to use the CODE Framework “Mapping” utilities to shuffle the information between objects instead of the way it’s shown here. Mapping is convenient if most of the Properties have the same names on both objects.
Notice that in this case, we see some data formatting in the Controller (Title=string.Format("{0}\r\n{1}", workItem.Title, wo…). This type of code should be moved to the ViewModel or Other Model.

Request and Response Objects
Also notice how the code interacts with the Service. We always create a custom class called a Request Object to pass parameters to the Service. This object contains only properties representing parameters. We ALWAYS create and pass a Request Object to a service call EVEN IF THERE ARE NO PARAMETERS TO PASS. This allows us to add parameters in the future if necessary without breaking the service contract.

The same holds true for all responses from Services. Every Service call MUST RETURN a Response Object.

These custom parameter and return classes are also called “Contracts” and are discussed later as their own Layer.

Always Check for Success on Response Objects
Every Response Object must have at least 2 properties on it, a bool named Success and a string named FailureMessage. You should always check the Success property after a call to a Service. Typically, you don’t want to show technical information to a user, so Services often return only general information about the problem in the FailureMessage string. Often, the way to handle a failure is to log it and/or display the problem to let the user know things did not go as planned. Troubleshooting for these types of errors has to happen in the Service. If you don’t check for Success and don’t let the user know, they may be unaware that there is a problem that needs to be addressed.

We prefer to avoid faulting a communication channel to indicate a problem to the client. Faulted channels have to be destroyed and re-created. In addition, we rarely want to return any more information about the problem to the caller than is absolutely necessary.

[bookmark: _Toc301185981][image:]Contract Layer
The Contract’s purpose is to define the method calls and data (broken down into simple data types) between Services and Controllers.

Contracts are interfaces and should contain nothing but method signatures and property names and types. It is good practice to include a parameter-less constructor to initialize each property. There should never be any logic in a Contract, not even in the getters and setters. All properties in a Contract should either be a primitive type (int, string, bool, etc…) or another Contract. Using complex types which can’t be broken down into primitive types (e.g. a DataSet) can hurt the ability to work with non-.NET clients.

In the CODE Architecture there are 4 types of contracts:
1. Service Contracts which describe all of the methods available to a caller
2. Request Contracts which hold all parameters passed to a method
3. Response Contracts which hold the Success and FailureMessage properties as well as all of the data to be returned from a method
4. Complex Data Contracts which can be used in both Request and Response Objects

Because we use Request Objects, methods will always have exactly 1 parameter. Even if you only need to pass a single parameter, put it inside a Request Object. Even if you don’t need to pass any parameters, still pass a Request object with no properties.

Because we almost always expect to get something back from a method call to a Service, we always have 1 Response Object per call. Even if the method does not return data, the Response Object should at least contain Success and FailureMessage properties.

Since Services often return complex data, we create Complex Data Contracts that can be passed inside Request and Response Objects. In our example, the Response Object for the call to GetMachines() on our Service has to return a collection of information about each machine. Since all properties on Contracts have to eventually break down to primitive types and since we can’t easily put all of those primitive types in our Response Object, we create a separate Contract for a Machine that *does* have only primitive property types. We then load our collection property on our Response Object with machine Contracts.

Contracts are crucial to Service Oriented Architectures because they effectively create a wall between Services and Controllers and Behaviors. This wall allows us to have some pretty awesome benefits:
1. Services and Controllers do not have to be in the same process, on the same machine, or even on the same network.
2. Separating the Services from the Controllers allows us to reuse Services in many applications. For example, we could create an email service which can be used by dozens of applications to send emails on their behalf.
3. Services and Controllers do not have to be built with the same technology. There is no reason java and Objective C clients can’t call a Service built in .NET.

This boundary – signified by the thick red lines on the diagram is a HUGE part of our architecture.

Where is it?
[image:]

Contracts are ALWAYS put in their own project(s) and are found in the Services folder in the solution. In this example you can see the MachineInformation Contract which is a Complex Data Contract. This Contract is loaded into the MachineResponse Contract (our Response Object) to return a collection of machine information to the client.

This is going to compile down to a pretty small DLL. This DLL will be used by the Service projects and *could* be used by UI projects that are built in .NET, which means the contracts are really owned by whoever is developing the service, however, any new versions of the contract must be distributed to the client (if they’re using them) before the service and client will work together.

Here is the code for the IProductionService Service Contract defining the available methods:
[image:]
Notice the [ServiceContract] attribute on the interface and the [OperationContract] attribute on each method. These are required by WCF and tell WCF to make the methods visible to clients. Also notice the comments. We comment the interface liberally (not the implementation) because these contracts also serve as our documentation to any client that wants to use the service.

Here is the code for the MachineResponse Response Object:
[image:]
Notice the [DataContract] and [DataMember] attributes required by WCF and also notice that every property is either a primitive type (int, string, bool, etc…) or a Complex Data Contract or collection of Complex Data Contracts. In this case, we have a collection of MachineInformation Contracts. Also notice that we initialize each property to a default value in the default (and only) constructor.

Here is the code for the MachineInformation Complex Data Contract:
[image:]
Again, each property can either be a basic type or another Complex Data Contract.

During development of V 1.0, we mark each DataMember with IsRequired = true. In subsequent versions of the contract we add parameters with IsRequired = false to preserve backward compatibility. If the new parameters ARE passed, the service can act accordingly; however older V 1.0 clients will still be able to use the service. When adding properties to a contract which has been released, you should also add a comment indicating when the property was added and by whom.

[bookmark: _Toc301185982][image:]Service Layer
The Service layer is there to serve up all of the application’s logic to whatever client apps need it.

In the client app we’re using in this example, the services will be used by the Controller Layer (and Behaviors which are not covered in this document).

All communication between Services and client applications is in the form of Contracts. Even if the client is not a .NET client (and can’t use the .NET Contract dll), all clients can understand Contracts built out of basic types (int, string, bool, etc…) Non-.NET clients will just have to re-code the contracts in their native languages to match the .NET contract. The same is true for .NET client apps using non-.NET Services. When using our CODE Framework Service libraries, we can expose JSON and REST XML data for easy consumption by non-.NET clients.

Services usually rely on Business Objects to do all of the heavy lifting. The Service coordinates the use of the Business Objects and maps data between the Business Objects and the Contracts.

In some cases, the business logic can be coded directly into the Service, skipping the Business Object Layer altogether and working with Data Access Layer directly. This usually makes sense only for simple scenarios where the data is read-only; for example, when querying for data to fill a list. Business Objects are usually much easier to work with when there is extensive logic and/or when data has to be written back to the DataBase Layer.

Services usually do the following:
1. Create an instance of the appropriate “Response Object”
2. Create an instance of 1 or more Business Objects
3. Make calls to the Business Object(s) using the parameters passed in via the Request Object
4. Copy (map) the data returned by the Business Object(s) into the Response Object
5. Put a try/catch around everything
6. Return the Response Object

Where is it?
[image:]
Here’s the code for our Service. In this case, the service has 3 methods client apps can call:
[image:]
Take special notice of the Try/Catch. You should ALWAYS put ALL of your code in a Try/Catch block in Services. Services almost never have a user interface. If the Service throws an exception for any reason, you should ALWAYS LOG AS MUCH INFORMATION AS YOU CAN ABOUT THE ERROR. In this case we use the GetTextErrorInformation() method to pull all of the information out of the exception object and convert it to straight text, then use the Milos LoggingMediator.Log() method to save it. This is usually set up to log to the Windows Event Log (Application Log).

Once you’ve logged the exception information so that it can be used in troubleshooting, return a Response Object to the client. Set the Success property to false and put a message in the FailureMessage property. The message you store here should not convey any of the information in the exception object, rather, it should tell the client application that something went wrong and possibly what to do next. For example, in this case the message, “Failed retrieving list of machines” would be appropriate.

[bookmark: _Toc301185983][image:]Business Object Layer
Business Objects are where most of the business logic (most of your code) lives.

Sometimes called the Object Relational Mapping (ORM) Layer, a lot of what happens in this layer is retrieving from and updating databases. Here we could use ORM tools and frameworks such as Entity Framework or NHibernate. In most CODE projects, we use the CODE Framework.

In the CODE Framework, the job of the Business Object is divided among two objects: Business Objects and Business Entities.

Business Objects are where you’ll find SQL commands. Most of the job of the Business Object is to act as an abstraction layer between your code and the database being used. Ideally, you should not have to worry about whether data is stored in SQL Server, Oracle, DB2 or some other database (of course your actual mileage may vary, but the framework goes a long way toward that goal). This is also where you can check to see if any business rules have been broken such as values out of range or values that cannot be left empty. In many cases when you don’t need to update data, such as when retrieving data for a combobox on the UI, you can use Business Objects directly without going through a Business Entity. Business Objects are stateless. You will find yourself adding methods, but not properties.

Business Entities are where you’ll find properties that hold the values retrieved from and written to the database(s) and where you’ll find business logic. Each Business Entity works with a corresponding Business Object. Unlike Business Objects, Business Entities cannot be used on their own because they can only communicate with a database through a Business Object. The Business Entity is what you’ll use in most of your code. For example, if you want to update a customer’s information you would use a “Customer” Business Entity to retrieve the customer’s data, then set properties on the Customer object to the new information and finally, call Customer.Save() to save the customer information back to the database.

Where is it?
[image:]
Business Objects live in the “Middle tier” folder.

Here is the code for our MachineBusinessObject:
[image:]
Notice it inherits from the Framework BusinessObject base class which gives you a ton of functionality for free and insulates you from the underlying database. In this case, we’re using SQL Server as the database, but you wouldn’t know it from looking at this code since we’re not using SQLCommand objects or SQLParameter objects. Always try to use the most generic ANSI SQL syntax to make your Business Objects more portable.

Also notice that you MUST OVERRIDE the Configure method and at minimum, tell the base class the names of the table and primary key field in the table.

It is common to return DataSets from Business Objects, in fact, that’s almost always the return type for methods you write here.

Here is the code for the MachineBusinessEntity:
[image:]
In this example, the code is in the same file as the corresponding Business Object, but it’s not uncommon to put each in a separate file. Notice the 2 protected constructors and the static methods NewEntity() and LoadEntity() that you use to create new instances in their place.

The rest of this entity shows the syntax for exposing the properties for a machine, though in this case we’re only surfacing 2 of the fields in the database.

CODE has created a developer tool for the framework which generates Business Object and Business Entity code from an easy to use GUI framework.

[bookmark: _Toc301185984][image:]Data Access Layer
The Data Access Layer is built to talk with a specific database.

While the Data Access Layer usually comes with the Business Object / ORM Layer and you don’t typically have to code it, it’s included here because we may allow direct access to this layer (skipping the Business Object Layer) in the future and because even though you won’t code it, you will use it.

Where is it?
[image:]

Oddly enough, for the CODE Framework, the Data Access Layer .dll is NOT referenced in the Business Object project(s) in the Middle Tier folder where you’d expect it. Remember that the Business Object abstracts away the actual database you decide to use. The Data Access Layer .dll is actually bound to the rest of the application AT RUNTIME (using .NET reflection), not at compile time. It just has to exist in the folder with the rest of the .dlls WHEN THE APPLICATION RUNS. For convenience, we add a reference to the .dll to whatever project is going to host our service. In this case, we’re using the Development Host, a WinForm solution that hosts our Services during development, so we set a reference there. The only reason we set the reference is that Visual Studio will copy the .dll to the output folder for us if we do so – just a convenience.

[bookmark: _Toc301185985][image:]Database Layer
The job of the database is to store data for our applications.

We try to code our Business Objects using standard ANSI SQL syntax so that it’s not tied to a particular database. The CODE Architecture philosophy is to put logic in code, not in the database. We rarely use a lot of stored procedures, functions, etc. We use them when necessary for performance or for some other reason (such as feeding reports outside of our applications).

Where is it?
Typically, we set up a database on one of our servers to be shared by all team members. Access to the database is particularly necessary for developers programming Business Objects and Services. Since developers working on Controllers, ViewModels and Views can usually access Services over the internet and since they can fake responses from any Services relatively easily, these developers often need little or no direct access to the database.

[bookmark: _Toc301185986]Mapping
You may have noticed that there is a lot of shuffling of data in this architecture. Let’s follow a piece of data from the database as it makes its way to the user interface. Here is a list of all of the mappings that take place.

1. The Business Object retrieves data from the database and maps it into a .NET DataTable
2. The Business Entity maps the information from the DataTable into its properties
3. The Service maps the properties of the Business Entity into properties on a Contract (Response Object)
4. The Controller maps the properties on the Contract into a ViewModel and/or Other Model
5. The controls on the UI bind to the properties on the ViewModel / Other Model

That’s a lot of shuffling and a lot of places where data can get lost or munged.

The mappings you have to worry about most as developers are shown by the black arrows on the Architecture diagram, listed as steps 3 and 4 above.

In most cases, it’s easiest to use the mapping pieces of the framework to shuffle the data for you. When the property names match on both sides, there is very little to do. In this example, we are mapping properties from a Contract to properties on a Business Entity:

[image:]

The framework is flexible and supports mapping to and from all types of classes (contracts, business entities, view models, other models, etc.) and even to and from DataTables.
In the case where property names do not match exactly, you have to specify the mapping for those properties when you do the mapping:
[image:]

[bookmark: _Toc301185987]Exception Handling and Logging
In the implementation of the service, there is usually no user interface on which to display a message and for security reasons (and also because they rarely care) we don’t want to return exception information to a client. So what do we do with this information which could prove invaluable for troubleshooting issues with the system? We log it somewhere; typically in the Application Event Log on the server hosting the service. We may also want to email that an exception occurred, or even the exception information to a support person.
In the service code, every exposed WCF method should contain a try/catch block surrounding all of the implementation code. In the catch block, we pass the exception to the Framework’s logging mechanism and then return a Response Object to the caller indicating a problem:
[image:]
The LoggingMediator class is typically configured in the project that hosts the service. During development that’s usually the Development Host project (shown below). For deployment, it’s usually the Windows Service Host project. The logging needs on these projects are often very different.
[image:]
If we wanted to send an email when an exception occurred, we would simply add a second logger here.

[bookmark: _Toc301185988]Hosting Services
WCF services are compiled into .DLLs and must be “hosted” by another application. During development, we usually host directly on the development machine in a WinForms application. The framework provides a very robust tool - the TestServiceHost class – to handle this for us. In this example, we are hosting only 1 service (ProductionService) and over only a single protocol (TCP):
[image:]
The application typically uses a .config file to provide the WCF configuration information (however we could provide this information in code by setting properties on the “host” variable). A typical configuration file looks like this:
[image:]
For deployment, instead of hosting an EXE that has to be started by a user or hosting our services in IIS which restricts the protocols we can choose from, we usually host our services within a Windows Service. The use of the term "service" can get confusing here. Now we’re talking about a Windows Service which is a process that runs on a windows machine (the client’s server) and doesn’t require a logged in user:
[image:]
We try to alleviate some of the confusion by making sure to name this project “Globe.Windows.Service”. To add to the complexity, Windows Services require a Setup program so that they can be installed on a computer. We name this project “Globe.Windows.Service.Setup“.
This project also has a .config file and this one usually has the settings for the actual deployment environment in it, though it is otherwise very similar to the .config file in the Development Host project.

Consuming Services
For client applications written in .NET, we add a reference to our Contracts .dll to our UI project. That tells us which methods we can call and what the data that we will pass in as parameters must look like and what the data that gets passed back to us as return values will look like.
In order to call the service, we use the ServiceClient class in the Framework:
[image:]
The ServiceClient class reads its settings from the UI project’s .config file:
[image:]
In this case, we’re connecting to our Development Host on localhost. These settings would be different when connecting to a server in production.

[bookmark: _Toc301185989]The _ExternalComponents Project
When developing any project we always put any 3rd party .DLLs we use under source control along with the project source. This means that any developer on any development machine can check out the solution and it will build with the correct versions of all 3rd party DLLs. We do this by creating either an empty project or a class library project (and then removing the Class1.cs file) in our solution. Then we create folders for each set of 3rd party DLLs and copy the DLLs (along with PDBs if we have them) into the new folders. It is up to you whether you also include the .XML documentation files. The drawback to including XML files is that when searching through your solution, you will often get false-positives on these files.
[image:]
One thing to note is that Visual Studio will now try to compile this project which may lead to compile-time errors. To prevent these use the Configuration Manager:
[image:]
And set all of your build configurations (Debug, Release, etc.) to not compile this project:
[image:]

[bookmark: _Toc301185990]Reference Project, Video and Other Resources
The early version of the Globe solution used in this documentation can be found on the “NEW” TFS server here:
[image:]

It contains “ReadMe.txt” files in several of the projects which point out various aspects of the architecture, suggested coding practices and implementation details. The source files in this project also contain copious “Comments” that would not normally be found in a real project. These comments are there to highlight important ideas and to help teach our approach and architecture.

There are several production solutions, targeting various UIs such as WPF, ASP.NET, Android, etc. that you can refer to as well. Please ask a supervisor who can point you to an appropriate example and grant you access to review the source code.

Here you can find a video walking you through the Globe Reference solution:
http://www.eps-office.com/production/Milos_DocumentManagement_DownloadFileAttachment.aspx?id=7b711c2e-2aa1-4a50-8a72-95f22e3ba207

0/0/0000 0:00 AM Page 1 of 37

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image1.png

