CODE Framework WPF Project Exercise #1

Tuesday, January 03, 2012

1 – New Project
[image:]Start with a new Solution. This should be the only project in it. Accept the defaults for the wizard. Once the framework is downloaded, close and remove Class1.cs from _ExternalComponents and make the WPF project the startup project. Build and run. Test switching themes. In the Themes folder, in the Metro folder, open Metro-Colors.xaml and change ThemeColor1 from DarkRed to LightBlue. You can also change the files in the Images folder to change the background image and logo image to match whatever customer you are creating this app for.

2 – Add a List of Customers
[image:]Always follow this order: Model, View, Controller (M-V-C).
M (model)
Under the Models folder add a new folder named “Customer”. In that folder add a CODE Framework MVVM/MVC ViewModel from the “New Item” dialog and name it CustomerListViewModel.cs.

Always start with properties first in a view model. For our view, we’re going to need an ObservableCollection of something. For this exercise, add a second class to the same view model file. Name it CusomerListDataViewModel and inherit from ViewModel. Add a Guid property: Id and 3 string properties: Name, Address & Phone. We should initialize, at a minimum, anything that could be null in the constructor (in this case, the strings, Guid is a value type that will default to Guid.Empty).

Back in the CustomerListViewModel, create a property named “Customers” (plural) that is an ObservableCollection<CustomerListDataViewModel> and initialize it in the constructor. Add a property of type CustomerListDataViewmodel called SelectedCustomer.
Next, create a public void method named LoadData() and call it from the constructor (after you initialize the collection). In the LoadData method, put in a TODO: comment to call a service and then fake the call by filling in some data using the Customers.Add() method. Add at least 3 fake customers.

V (view)
Under the Views folder add a new folder named “Customer”. In that folder add a CODE Framework MVVM/MVC View from the “New Item” dialog and name it “List.xaml”. Set the title to “Customers” (plural) and choose Standard Layout for the View Style. Accept default values for the rest.

Add a ListBox to the view. Set the ItemsSource property to {Binding Customers} and the SelectedItem property to {Binding SelectedCustomer}.

C (controller)
In the Controllers folder, add a CODE Framework MVVM/MVC Controller from the “New Item” dialog and name it CustomerController.cs.

Rename the Index method to List and add a new instance of the CustomerListViewModel as the parameter to the View() that is returned.

Hook It Up
You’re going to call the new list from the main menu (Live Tiles in the Metro skin), so open up the Models folder, then in the Home folder open StartViewModel.cs . Modify the 1st Action in the actions collection to read “Customers” (plural), remove the MessageBox and instead open the new view: Controller.Action(“Customer”, “List”) [which means, go to the Customer controller and fire the View method].

Run It
You should see a list when you click the Customers Live Tile. Try it in Battleship theme also. You will have to close the list before changing themes. The list will not show any properties for the customers yet.

Make It Pretty (er)
Open up List.xaml again and add a ListBox.ItemTemplate tag to the list box. Inside of that tag add a DataTemplate tag. Inside the data template, add a StackPanel with Orientation = Horizontal. Inside the stack panel, add the columns for the list using 3 TextBlocks. Set Text = {Binding Name} on the first, Address for the second and Phone for the third. Set Width = 200 on all 3. In order to make it look a little nicer, add a Rectangle after each text block. Set Fill = Gray and Width = 2 on each rectangle. Run it to make sure it looks right.
Cut the in-line ListBox.ItemTemplate out of List.xaml and paste it into List.Battleship.xaml. Add a new Style tag on the same level as the ListBox.ItemTemplate tag. Add a x:Key property and give it a value of CustomerListStyle. Add a x:Key property to the DataTemplate tag and give it a value of CustomerListDataTemplate. Inside the Style tag, add a Setter tag and set Property = ListBox.ItemTemplate and Value = {DynamicResource CustomerListDataTemplate}. Remove the ListBox.ItemTemplate tag from around the DataTemplate tag. Copy the Style and DataTemplate and paste them into List.Metro.xaml. Go back to List.xaml and add a Style property to the ListBox and set it to {DynamicResource CustomerListStyle}. Run the app and make sure it looks right.
Open up List.Metro.xaml again. Set the Background of the StackPanel to Beige, remove the Orientation property and add Margin=5. Add a new Setter in the Style tag. Set Property = ItemsPanel and Value = {DynamicResource CustomerListItemsPanelTemplate}. Add a new ItemsPanelTemplate tag on the same level as Style and DataTemplate. Set its x:Key = CustomerListItemsPanelTemplate. Inside of that tag, add a WrapPanel tag (no properties to set on that one). Add a 3rd Setter in the Style tag. Set Property = ScrollViewer.HorizontalScrollBarVisibilty and Value = Disabled. Run the app again and make sure that using the Metro style, the customers are shown left to right and wrap as you resize the screen. In the Battleship style, you should still see a very traditional looking grid.
[image:]
[image:]

3 – Add a Customer Edit Screen

M (model)
In the Customer folder inside the ViewModels folder add a CODE Framework MVVM/MVC ViewModel from the “New Item” dialog and name it CustomerEditViewModel.cs.

Again - Always start with properties first in a view model. For our view, we’re going to need all of the ID, Name, Address and Phone properties we created in the CustomerListDataViewModel. Copy and paste them into our new view model. Add another property, a DateTime named CustomerSince. Next, add a public void method named LoadData and call it from the constructor. In the LoadData method, add a TODO: indicating that this is where you’d make a service call to get the data, then populate Id, Name, Address, Phone and CustomerSince with fake data. Normally for an edit screen, we’ll be expecting to be passed the id of the record to edit. Add a Guid parameter named id to the constructor and pass it into LoadData. You can set the Id property to this value if you like.

V (view)
In the Customer folder inside the Views folder add a CODE Framework MVVM/MVC View from the “New Item” dialog and name it “Edit.xaml”. Set the title to “Edit Customer” (plural) and choose Edit Form Layout for the View Style. Accept default values for the rest.

Add a Label tag with the word “Name:” in it, followed by a TextBox tag where the Text property is set to {Binding Name} and Width = 200. Copy this pair of tags and paste it into the file 3 more times. Change the label and bindings for the 3 new sets of tags to Address, Phone and CustomerSince. Change the control for CustomerSince from a TextBox to a Calendar and change the Text= property to SelectedDate=.

C (controller)
Open up CustomerController.cs in the Controllers folder. Make a new method named “Edit” that takes a Guid parameter and passes the parameter into the CustomerEditViewModel that it will pass into the View method.

Hook It Up
We want to open this view when the user selects a customer from the list of customers, so open up CustomerListViewModel.cs. Add a property of type IViewAction named Edit. In the constructor, just before or just after adding to the Actions list, initialize Edit to a new ViewAction with lambda expression that calls the controller: Controller.Action("Customer", "Edit", new {Id = SelectedCustomer.Id}). Open List.xaml to bind this command to the list box. You’ll need to add a reference to CODE.Framework.Wpf.Controls to the top of the xaml file. Name the xmlns “Controls”. Add the Controls:ListBoxEx.Command property to the list box and set it to {Binding Edit}. Add the Controls:ListBoxEx.CommandTrigger property and set it to DoubleClickAndSelect.

Run It
You should be able to open the edit form whenever you select a customer from the list in either Metro or Battleship styles. Note that you should move the Controls:ListBoxEx.CommandTrigger property into the List.Battleship.xaml and List.Metro.xaml resource dictionaries, but this will work for now.
Make it Pretty (er)
Add the following property to the Phone: label in Edit.xaml: mvvm:View.GroupBreak="True". Next, put a StackPanel around the CustomerSince: label and Calendar control. Add an empty label above the stack panel and add the following property: mvvm:View.ColumnBreak="True". Run the app and see how the edit screen looks.
[image:]
[image:]

4 – Allow Adding Customers
Since adding and editing customers are nearly identical tasks, we can use CustomerEditViewModel.cs and Edit.xaml for adding as well.

M (model)
Open CustomerEditviewModel and copy and paste the constructor. Remove the id parameter from one of the constructors and as the parameter to LoadData in that constructor as well. Copy and paste the LoadData method and remove the parameter from it. Modify the fake data loaded by the method so that you can tell which set of data you are looking at (add or edit).

V (view)
No changes need to be made to the view.

C (controller)
Open CustomerController.cs, copy and paste the Edit method and rename one of them to Add. Remove the id parameter and the id passed to the view model form the Add method. Since the framework will be looking for a view named Add.xaml, you’ll have to specify “Edit” as the first parameter of the View method in the Add method.

Hook It Up
You’ll want to trigger this from an Add button on the customer list. Open CustomerListViewModel.cs and edit the “Example” button to read “Add” and change the action from a message box to: Controller.Action("Customer", "Edit").

Run It
You should see different data when you edit vs. add.
[bookmark: _GoBack]

Summary

With the skills used in this exercise, you can build very large and powerful applications. Practice this exercise until you can do it from memory. Future exercises cover services and the service calls we added TODO: comments for as well as more advanced use of the CODE framework for WPF MVVM/MVC.

image6.png

image1.png

image2.png

image3.png

image4.png

image5.png

